Ultra-Low Power, Process-Tolerant 10T (PT10T) SRAM with Improved Read/Write Ability for Internet of Things (IoT) Applications
نویسنده
چکیده
Abstract: An ultra-low power (ULP), power gated static random access memory (SRAM) is presented for Internet of Things (IoT) applications, which operates in sub-threshold voltage ranges from 300mV to 500mV. The proposed SRAM has tendency to operate in low supply voltages with high static and dynamic noise margins. The IoT application involves battery enabled low leakage memory architecture in subthreshold regime which has low power consumption. Therefore, to improve power consumption along with better cell stability, a power gated 10T SRAM is presented. The proposed cell uses a power gated p-MOS transistor to reduce the leakage power or static power in standby mode. Moreover, due to the schmitt triggering and read decoupling of 10T SRAM the static and dynamic behavior in read, write and standby mode has shown enhanced tolerance at different process, voltage and temperature (PVT) conditions. The proposed SRAM shows better results in terms of leakage power, read static noise margin (RSNM), write static noise margin (WSNM), write-ability or write trip point (WTP), read-write energy and dynamic read margin (DRM). Further, these parameters are observed at 8-Kilo bit (Kb) and compared with already existing SRAM architectures. It is observed that the leakage power is reduced by 1/81×, 1/75× of the conventional 6T (C6T) SRAM and read decoupled 8T (RD8T) SRAM, respectively at 300mV VDD. On the contrary, RSNM, WSNM, WTP and DRM values are improved by 3×, 2×, 11.11% and 31.8% as compared to C6T SRAM, respectively. Similarly, proposed 10T has 1.48×, 25% and 9.75% better RSNM, WSNM and WTP values as compared to RD8T SRAM, respectively at 300mV VDD.
منابع مشابه
A Sub-threshold 9T SRAM Cell with High Write and Read ability with Bit Interleaving Capability
This paper proposes a new sub-threshold low power 9T static random-access memory (SRAM) cell compatible with bit interleaving structure in which the effective sizing adjustment of access transistors in write mode is provided by isolating writing and reading paths. In the proposed cell, we consider a weak inverter to make better write mode operation. Moreover applying boosted word line feature ...
متن کاملUltra Low Power Symmetric Pass Gate Adiabatic Logic with CNTFET for Secure IoT Applications
With the advent and development of the Internet of Things, new needs arose and more attention was paid to these needs. These needs include: low power consumption, low area consumption, low supply voltage, higher security and so on. Many solutions have been proposed to improve each one of these needs. In this paper, we try to reduce the power consumption and enhance the security by using SPGAL, ...
متن کاملUltra Low-Power Fault-Tolerant SRAM Design in 90nm CMOS Technology
.................................................................................................................................. iii TABLE OF CONTENTS ............................................................................................................... iv LIST OF FIGURES ....................................................................................................................
متن کاملA 0.3V 1kb Sub-Threshold SRAM for Ultra-Low- Power Application in 90nm CMOS
Ultra-low power device is very popular in recent years because of some applications like medical device and communications. For the ultralow-power consideration, the crucial in SRAMs are stability and reliability. In conventional 6T SRAMs is hard to achieve reliability in sub-threshold operation. Hence, some researchers have considered different configuration SRAMs cell for sub-threshold operat...
متن کاملA new low-power 10T SRAM cell with improved read SNM
This paper describes the characteristics of a new 10T structure for SRAM cell that works quite well in the sub-threshold region. This new architecture has good characteristics in write and read delay and energy compared with other new structures. This new 10T topology improves read static noise margin (SNM) and write operation speed with respect to other topologies in the same or even lower pow...
متن کامل